Model Selection for Cox Models with Time-Varying Coefficients
نویسندگان
چکیده
منابع مشابه
Model selection for Cox models with time-varying coefficients.
Summary Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on right-censored failure times. Because not all covariate coefficients are time varying, model selection for such models presents an additional challenge, which is to distinguish covariates with time-varying coefficient from those with time-independent coefficient. ...
متن کاملVariable selection in Cox regression models with varying coefficients
We deal with two kinds of Cox regression models with varying coefficients. The coefficients vary with time in one model. In the other model, there is an important random variable called an index variable and the coefficients vary with the variable. In both models, we have p-dimensional covariates and p increases moderately. However, it is the case that only a small part of the covariates are re...
متن کاملHypothesis testing for an extended cox model with time-varying coefficients.
The log-rank test has been widely used to test treatment effects under the Cox model for censored time-to-event outcomes, though it may lose power substantially when the model's proportional hazards assumption does not hold. In this article, we consider an extended Cox model that uses B-splines or smoothing splines to model a time-varying treatment effect and propose score test statistics for t...
متن کاملAn autoregressive model with time-varying coefficients for wind fields
In this paper, an original Markov-switching autoregressive model is proposed to describe the space-time evolution of wind fields. At first, a non-observable process is introduced in order to model the motion of the meteorological structures. Then, conditionally to this process, the evolution of the wind fields is described by using autoregressive models whith time varying coefficients. The prop...
متن کاملInference of high-dimensional linear models with time-varying coefficients
We propose a pointwise inference algorithm for high-dimensional linear models with time-varying coefficients. The method is based on a novel combination of the nonparametric kernel smoothing technique and a Lasso bias-corrected ridge regression estimator. Due to the non-stationarity feature of the model, dynamic bias-variance decomposition of the estimator is obtained. With a bias-correction pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2012
ISSN: 0006-341X
DOI: 10.1111/j.1541-0420.2011.01692.x